L (I &8
(Analytical oo : SN
uncl s
305







NASA Contractor Report 4373

Nonparallel Instability of
Supersonic and Hypersonic
Boundary Layers

Nabil M. El-Hady
Analytical Services & Materials, Inc.
Hampton, Virginia

Prepared for
Langley Research Center
under Contract NAS1-18599

NNASA

National Aeronautics and
Space Administration

Office of Management
Scientific and Technical
Information Division

1991






NONPARALLEL INSTABILITY OF SUPERSONIC AND
HYPERSONIC BOUNDARY LAYERS

Nabil M. El-Hady t

Analytical Services and Materials, Inc.
Hampton, Virginia 23666

1. INTRODUCTION

It is customary to use the parallel-flow approximation to describe the linear instability of
boundary-layer flows to small amplitude disturbances. In spite of the qualitative success of this
assumption, the parallel stability theory does not explain some important phenomena, and the

experiments [1-3] have shown systematic differences with the theory.

Apart from predicting a minimum critical Reynolds number that is lower than that given
by the parallel stability theory, evidence from experiments shows that the growth rate of the
disturbance is not only a function of the coordinate normal to the wall, but also is different for
different flow quantities. These phenomena occur due to the increase in the boundary-layer
thickness. In cases where the mean boundary-layer flow changes rapidly due to localized
adjustments, the parallel flow assumption is expected to fail, and the stability characteristics
may not be accurately predicted. Also at the early stages of the nonlinear interactions, El-
Hady [4] has shown that nonparallel flow effects may control the initial development of the

triad components in a triad resonant interaction model.

The comparison of the minimum critical Reynolds number between theory and experiment
is always poor (this comparison exists only for incompressible flows). The large discrepancy
occurs for high-frequency disturbances that exhibit weak amplification, and has often been
attributed to nonparallel effects of the mean flow. Thorough analytical and Navier-Stokes

investigations for incompressible flows [5] have confirmed that the nonparallel mean-flow
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effects, if accurately calculated, are weak for two-dimensional (2D) disturbances and conse-
quently do not explain the discrepancy between the theory and the experiment at incompressi-
ble speeds. Some plausible reasons due to difficulties encountered in low speed experiments
are discussed by Saric [6], which may have large effects on the experimental measurements
specially for high frequency disturbances. Bertolotti [5] has conducted a sensitivity study on
the neutral curves of 2D disturbances in incompressible flows. He investigated the effect of the
distance from the wall at which the measurements are made, the effect of the presence of a
slight adverse pressure gradient, the effect of the extent of transient response ( from a vibrating
ribbon) following altered initial conditions, and the effect of nonlinear disturbance-amplitude
levels used in the experiments. He found that all factors may contribute to the well known

theoretical-experimental discrepancy at incompressible speeds.

The effect of the mean-flow nonparallelism on the stability and transition prediction of
boundary layers is better illustrated by investigating the behavior of the growth rates of given
disturbance frequency rather than by investigating its effect on the critical Reynolds number.
For the flat plate compressible boundary layer, the boundary-layer thickness & grows propor-
tional to M2 , where M. is the free stream Mach number. Clearly, as the Mach number
increases, the boundary layer becomes thicker and therefore the effect of the flow nonparallel-
ism on the stability characteristics could be more pronounced for supersonic and hypersonic
flows. For these speed ranges, accurate prediction of transition and transition control may be
extremely beneficial, since skin friction and subsequent aerodynamic heating are considerably

higher for turbulent flows at high speeds.

High speed stability experiments have been carried out on flat plates [7-9], and cones
[10-12]. Each experimental facility has its own problems, some of which are due to sound
radiation from the tunnel-wall boundary layer which affects the disturbance growth and dom-
inates the transition process. Consequently, one expects to find difficulties and discrepances
when comparing theoretical and experimental results for high-speed boundary layers; see Bush-

nell [13] for a description of the possible difficulties as well as suggested remedies. Almost all
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experimental measurements reported on the stability of boundary layers were made by means
of hot-wire anemometers. Any such measurements encounter two basic difficulties that come
from the response and the sensitivity of the hot wire. The hot-wire response is a combination
of mass-flow and stagnation temperature fluctuations. When the hot wire is operated at high
constant overheat, its response is proportional to the mean square of the mass-flow fluctuations.
Also the sensitivity of the hot wire changes when it moves across the boundary layer, or when-
ever the mean flow is changed. Disturbances that develop in a growing boundary layer have
eigenfunctions of nonsimilar nature, thus making it difficult to separate the actual growth of
the disturbance from the change in the amplitude distribution across the boundary layer.
Hence, each measurement technique will necessarily include the contribution of the streamwise

distortion of the eigenfunction in the measurement of the growth rate of the disturbance.

Nonparallel stability theories for a compressible boundary layer were developed by El-
Hady and Nayfeh [14], El-Hady [15], and Gaponov [16]. The nonparallel theory accounts for
the weak dependence of the flow parameters on the streamwise coordinate, as well as the velo-
city normal to the wall. This theory gives a more accuraie mathematical model for the
development of the disturbance. The calculation of the neutral stability in the nonparallel
theory encounters the difficulty of being dependent upon the disturbance flow quantity e.g.
streamwise velocity , mass flow, total temperature, kinetic energy, and also upon the coordinate
normal to the wall. Some of these quantities can easily be measured in an experiment, while
some are difficult to measure. For meaningful comparison with the experiment, the same dis-

turbance quantity used in the measurements must be used in the stability calculations.

The purpose of this paper is to revisit the nonparallel stability theory and clarify a rather
confused numerical situation. This situation arises due to totally neglecting the distortion of the
eigenfunction of the disturbance when comparing with low speed experiments [17,18], or due
to insufficient grid resolution in calculating the distortion of the disturbance eigensolution as
Mach number increases [14], which was corrected by El-Hady [15] for Mach number 4.5. The

effect of the growth of the boundary layer on the amplification rates of the disturbances, and
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on the maximum amplified frequencies is assessed for a large range of Mach numbers includ-
ing first- and second-mode disturbances. Disturbance growth rates are calculated based on
three different methods, namely, following the maximum of the mass-flow disturbance, using
the integral of the disturbance kinetic energy, and using the integral of the square of the ampli-
tude of the mass-flow disturbance. In Section 2, the multiple scaling analysis of the stability
problem is developed. Section 3 discusses different definitions of the disturbance growth rate.
Results of subsonic and supersonic stability are discussed in Section 4.1. Results of hypersonic
stability are discussed in section 4.2. Section 4.3 gives a comparison between nonparallel sta-

bility results and experiments. We end with concluding remarks.

2. ANALYSIS

In this study we are concerned with the so-called first-mode and second-mode instability
of the supersonic and hypersonic flat plate boundary layers. The most amplified wave is
three-dimensional (3D) for supersonic boundary layers, and two-dimensional (2D) for hyper-
sonic boundary layers.

The flow field is governed by the laminar, compressible, 3D Navier-Stokes and energy
equations. Lengths, velocities, and time are made dimensionless using a reference length
L™ = (vo.x"/ug,)"?, the local free stream velocity ug,, and L*/uf, respectively, so that the Rey-
nolds number is given by R =ugL" /v, =yR,. Here x* is the streamwise distance from the
leading edge, vq, is the kinematic viscosity coefficient calculated at the local free stream condi-
tions, and the asterisk indicates a dimensional quantity. The pressure is made dimensionless
using pq.us?. The temperature, density, specific heats, viscosity, and thermal conductivity of air
(treated as perfect gas) are made dimensionless using their corresponding local free stream

values.

We consider the 2D compressible mean flow to be slightly nonparallel; that is, the normal
velocity component v, is small compared with the streamwise component uo, the mean-flow

quantities are weakly varying functions of the streamwise coordinate x. The parameter ¢



-5 -

characterizes this weak variation and is identified with 1R. The method of multiple scales {19]
is used to introduce the slow scales x; =ex and z; =ez in the streamwise and spanwise direc-
tions, respectively. These scales govern the growth of the boundary layer, the modulation of
the disturbance amplitude, and the change in the eigenfunction, while the phase of the distur-
bance changes over the spatial scales x, z, and the temporal scale ¢. The mean-flow velocity

and pressure fields are then given by
uo =g (X1y), Vo=8vo (x1.y), Po=Ppolx1)
and the mean-flow temperature, viscosity, and density are given by

Ty=To (x1.y)s Mo =Ho (x1,¥), Po=Po (X1.y)
The boundary-layer temperature and density profiles are related by pyTo =1, and the viscosity p,
is a function of the temperature only, through Sutherland’s law.

To study the stability of the compressible nonparallel mean flow, we assume that the flow

quantities possess a uniformly valid expansions of the form

2
q = ‘IO(xl,)’) + Z smqm(xrxlay 2 ,21,1 711) + 0(23) (1)

m=1
where g, stands for the steady mean-flow quantities ug, vo, wo, Po, To» Hos and po ( wg=0 for 2D
mean flows), ¢, and g, stand for the corresponding unsteady small disturbance quantities and
ty=¢¢ 1s a slow time scale.

Substituting Eq.(1) into the governing Navier-Stokes equations, transforming the space
and time derivatives to x,, z,, and ¢;, subtracting the mean-flow terms, linearizing the equations,
and equating the coefficients of like powers of e, we obtain the following first- and second-
order disturbance equations:

Order ¢ :

0 d 0 ou ov ow
Ll(“hV1,W1,Px)=—apll+uo%+ -g;—OV1+P0(—éx—l+ a—y‘+ az‘)zo ()
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L T = poSUL 4y 2B, Fo ﬂlvzﬁ__aulavl
21 v w1p 1T = pof 3 + Uug 3% + 3 vy) + e MoViu, + (By + ax)
ov ow
—(~—u1)+ (m+1)uo—(—a—’— I)J 3)
L o= g2y, P L) e, O 0w
3 1,v1.w 1P 1Th) = pof 5 tHog )t R | MVt 5 [+ (m+2) 5 " 1
aul awl dugy Y,
+ (m+1)u,0 ( =" 3, % axJ =0 4)
ow ow ap 1 oy dw dv
Lauviwipy) = Po(a_tl + U o l) —1 —E[uov%l + a—( yl + 721—
a aul avl _
+ m+Dpy— (== + % )} =0 )
or aT a7 dp dp 1 Ooug ou ov
Ls(ui,vip1iT1) = po( a{‘ + U axl + 3 ) (Y—I)Mz[ a:l +uoa—xl + E[ lloa—o a_yl + a—xl

dug 1 ’ Ol 9T, g dT
+( )ud} Rr[ro T, + o ay(a M) 6)

Le(p1,T1.p1) =YM2p) - poT) — Top, = 0 )

Order € :

Bpl aul awl apl auo aVO apl apo

Ly(uavowa,Ty) = T, pO(E + )T uOE —(E + W)pl - VO—BT '5;7“1 (8)

du, dut, apl d%u, *u, %u,
Lo(uavo,wo,pa,Ty) = _PO(I + MOE) N — | Hol(m+2)( Fxox; axlax) + 3292,
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azul aZW] azwl azwl azwl 1 azvl a'.lo avl
B m S ikl v Tl W P T WM AP P VLA R

d d 3 d 3
e TVl R4S N m—g;—l] + [(me) =2

dvg  d
ox, ox dy "

0x4 dy ] ox

aug auo auo aul
— (uo o, + Vo % P — ol . u + Vo‘ay—) )

L T.) = 91 + 2}_ 1 82v1 azvl 82v1 32v1 a}lg aul aw,
uavawapals) = —pol 5=+ kog) + Ml am+ 5o+ 55 * 50 "y Gox, T ey
d du, ow dug O, Oy duy  dvy vy ditg Oy
Doy (G + ) g T 5 Gy ) T A S
a2u0 azvo 0
+ [('"”)ayax] +(m+2)5y7]u1 —pogy—(vovl) (10)
L = ow, ﬁv_, op, 1 Pw, 0w, . ’w, o*w,
drwowrprTD) = —Pol5 = + oy D) = S+l ga + Goan H DGR 5 )
. (82u1 . u, %u, u, " v,
g " o) T amer ok T Ve
+%ﬂ+aﬂ(%+%+ 9&4_3‘)_0% —_ iﬁ (11)
dy 0z, ox; ox dz ’"(axl dy = 0z Povo Jdy

[PPSR (N T O U (.
sua,v2,p2.T2) = —po an +u°8x1) p0(8x1u1+v0 ay)+(u°8x1 Vo 3 P

op ap,  dpg opy 1 dug ov; dug du;  dvg dv,

2| 9P1 o | CPo 9L 1, G4 9¥1 Obg OUy | OVo OV

+ (DM oty +u08x1 * axl“‘”" dy +2”0R[ dy ox; +(m+2)(8x1 ox * dy dy
_au_() aVl an ) + ﬂ aul % ] 1 32T1 82T1 ale 82T1 ap() 8T1 E)To aul
My a0 ey Cor T 3| T RT | Marar, T anar T Bon, T 0ade) | oxy ax | oxy ox

(12)
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where I is Prandtl number that is a function of the mean-flow temperature, M. is the frees-
tream Mach number, and m =2(e-1)¥3 is the ratio of the second to the first viscosity
coefficients. ¢ = 0 corresponds to the Stokes hypothesis; it is taken to be 0.8 in this analysis.

Moreover,

= (m+2)"—ai + (m+2)° il + (m+2)° il
ox? ay? 9z?

The exponents a, b, and c take the values 1,0,0 for Eq (3), 0,1,0 for Eq (4), 0,0,1 for Eq (5),
and 0,0,0 for Eq (6). The leading-order equations are homogeneous and govern the disturbance
motion in a parallel flow, while the higher-order equations include the nonparallel effects as

inhomogeneous terms.

A. First-order equations

We express the solution of the homogeneous equations as
Gin =AxLzn) G(xy.2)) e +cc. n=1,..8 (13)

where A(x,z,1)) is an amplitude modulation function that is determined by the solvability con-
dition of the higher-order inhomogeneous equations, &, (x, y.z,) are eigenfunctions, ¢,, are the
physical wave amplitudes, and "cc" stands for complex conjugate. Note that the quantity
A(xyz101 Ca(xyy,2y) 18 unique and is independent of the eigenfunction normalization, and can be
directly compared with the experiment. In Eq (13), ¢,,, n =1,....8 stands for uy, 0u\ldy, vy, pi,

T\, aT,/dy, wy, and ow,/dy, respectively, and

%} = Q(x1.21), %} = Blxy.21), i =-0 (14)

The phase function 1 is assumed to be continuously differentiable; that is, dosdz, =0df/dx;. «
and B are the complex wavenumbers in the x and : directions given by a=a, +io; and
B=P, +ip;, and o is the complex frequency given by w=w, +iw;,. The density disturbance is
related to the pressure and temperature disturbances through the state equation (7), while the

viscosity disturbance is related to the temperature disturbance by w; = [dpydT )T,



-9

Substituting (13) and (14) into the first-order equations, and writing the result as a system

of eight first-order ordinary differential equations, we obtain

8
D¢, - Y b,;§;=0, n=1,.8 (15)
Jj=1
subject to the boundary conditions
Li=l=0=§=0, ary=0 (16)
Cl’ C3’ CS’ §7_> 07 as y— oo, (17)

where D = d/dy and the nonzero elements of b,; are given in Appendix A.

B. Second-order Equations

In order to determine the amplitude A in (13), we seek a particular solution for the

second-order equations in the form
Gon = Y (VX 1,2101) eT+cc. n=1,.8 (18)

where ¢,, stands for uy, dus/dy, va, pa, Ta, 0Ty, wa, and ow,dy, respectively. By using Eqs
(13), (14) and (18), we can write the second-order problem as eight first-order equations in the

form

8
D\Vn - Z bnjw_[ = ln, ﬂ=l,...,8, (19)

subject to the boundary conditions
yi=y3=ys=y,=0, aty=0, 0)
VL W3, Ws, Y o 0, asy > (21)

The coefficients b,; are the same as in Eq.(15), while the inhomogeneous terms 7, are functions
of the first-order eigensolution ¢, of Eq.(4), a, B, o, and the mean-flow quantities. The terms

1, include all leading-order nonparallel flow effects.
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The necessary and sufficient condition for solving the inhomogeneous set of Eqs.(19) is

that 7, must be orthogonal to the solution of the adjoint problem. This can be expressed as

Sty §

8
n=1

where . are eigensolutions of the equation adjoint to (19). Thus ¢ satisfy

8
DCy - ¥ b, &/ =0, n=1..8, (23)
j=l
G=0i=C=(=0, ary=0, (24)
GGG Gs >0, asy — oo (25)

and b,; = -b;,. The solvability condition (22) gives the following differential equation for the

evolution of the amplitude A in time and space:

24 24 94 B
o, +hlax1 +h2821 +hA =0 (26)

Here, 4, and #, are the components of the disturbance group velocity in the x and z directions,
respectively, while ; reflects the effect of the nonparallelism of the mean flow. In Eq (26), h,
contains the x, and z, derivatives of the steady mean-flow quantities, the derivatives of the
wavenumbers o and B, and the derivatives of the eigenfunctions {,,» = 1,..8 of the leading-order
problem. The expressions for 4, and 4, are given in Appendix B.

For the purpose of our investigation, and to be closer in representing the experiment, we
consider the spatial modulation of a single frequency disturbance (i.e. 94 /ot; = 0) which has a
uniform amplitude in the spanwise coordinate (i.e. 34/3z, = 0) . Note that the phase of the dis-
turbance varies with the streamwise and the spanwise directions but the slow modulation of the

disturbance occurs only in the streamwise direction. Equation (26) simplifies to

A A, w=i 27)

and therefore,
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A=Apexplif etrdx ] (28)

*o
where A, is the initial amplitude at x = xo. In order to calculate &, it is necessary to evaluate
the nonparallel terms oC,/dx; and do/dx, in h,. We differentiate the first-order equations (15)

with respect to x, and obtain

L) b, &g,
D[ axl] - ng bnj axl _E axl ij n=1,.8 (29)
X 8 % g ay-o, (30)

dx; dx; Ox; 0x;

a 3 9% 9 (31)

--—-, ——’ _, O, oo
ax1 axl 311 axl - asy -

The homogeneous part of Eq.(29) has a nontrivial solution; its eigenvalues and adjoint is the
same as that for the first-order equations (15). Again, by applying the solvability condition, we
can evaluate do/dx,, and then integrate Eqs (29)-(31) to determine d,/dxy, using the same pro-

cedure as for the first-order equations, but for a nonhomogeneous set of equations.
Therefore, to the leading-order approximation Egs (13), (14), and (28) give the distur-
bance as

Gn = Ao Lu(xiy) expil [ (o +e o) dr +Pz —wr 1+ 0@, n=1,.8 (32)

Where both § and © in Eq (32) are real constants.

The spatial growth rate of the disturbance can be given as:

_ 1 9%, _
G, =—0 —EO +€ {—QT aﬁ} ; n=1,...8 (33)

The first term is the spatial growth rate in a parallel flow, while the second and third terms are
the nonparallel correction. A correction to the disturbance wavenumber due to mean-flow non-

parallelism can also be calculated by the theory. The wavenumber of the disturbance is given

by :



12 -

4

_ 1 9, B
ky =0, +e0, +¢ [ 3 ale;' n=l1,..8 (34)

where the subscripts » and i in Eqs (32) and (33) stand for the real and imaginary parts of the

quantity.

3. DEFINITION OF THE GROWTH RATE

Equation (13) gives the physical disturbance amplitude as A (x,){(x,.y), where A(x,) is the
amplitude modulation function, and {(x,,y) is an eigenfunction. Because part of { can be
absorbed in A, and hence in & in Eq (27), then @ is dependent on the normalization of the
eigenfunction {. On the other hand, the physical disturbance amplitude 4 (x,){(x,.y) is unique
and is independent of the eigenfunction normalization. The spatial growth rate of the distur-
bance then can be evaluated by using Eq (33) which consists of three terms. The first term is
the parallel growth rate, while the second and the third terms together give the nonparallel
correction to the parallel growth rate. The second term is independent of y, while the third
term, which arises due to the distortion of the eigenfunction, is not only x and y dependent, but
also is a function of the physical-flow quantity. Because of this behavior, the neutral stability
curve as well as the growth rate of the disturbance in the nonparallel stability theory becomes a
function of (x,y) as well as the flow quantity used in the calculations. This complicated char-
acter of the growth rate and of the stability definition , although undesirable, is shared by the
experiments.

All growth rate calculations reported in this paper use the definition given by Eq (33),
which is based on relevant physical quantities. The mass-flow disturbance is chosen for this
purpose as a physical quantity that can be measured experimentally in compressible boundary
layers. The mass-flow disturbance {y(x,,y) is derived by subtracting the mean mass flow from

the total mass flow and linearizing to arrive at

G (i) = 72 (2L - %“% (35)
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where ¢, ¢, and {s are u, , p;, and T, respectively. We normalize the eigensolutions such that

the maximum of |1¢| over the normal coordinate is equal to one.

At Mach numbers 1.6 and 3.0, and different streamwise locations, Figs (1) and (2) show
the variation with the normal coordinate of the mass-flow disturbance amplitude across the
boundary layer, the variation of the mass-flow eigenfunction distortion (the third term in Eq
(33)) and the variation of the total nonparallel growth rate given by Eq (33). These figures
show that the distortion of the mass-flow eigenfunction can have an apparent stabilizing or des-
tabilizing influence depending on the y-location where the growth rate is calculated. The value

of the distortion is relatively small at the y-location where |yl is maximum.

The rapid change of the distortion term that is observed in Figs (1) and (2) around the
peak of the eigenfunction makes the theoretical calculations of nonparallel growth rates highly
sensitive to both the grid resolution in the normal coordinate, as well as the procedure used to
search for the peak value. This sensitivity increases as Mach number increases. The nonparal-
lel results of El-Hady and Nayfeh [14] suffer from this sensitivity due to the use of low grid
resolution in the normal direction. Note that the eigenvalue of the first-order problem (15) is
not sensitive to the grid resolution. These results were corrected by El-Hady [15] for Mach
number 4.5. The rapid change in the distortion term may easily create a source of discrepancy
between nonparallel-theory calculations and experiments that claim to follow a certain y-
location (within the experimental error). This point will be discussed in more details in Sec-
tion 4.3 when comparing the theoretical and the experimental results. To decrease the effect of
this sensitivity in calculating the nonparallel growth rate , a value of the distortion effect may
be chosen near the outer edge of the boundary layer, where it is apparently constant as shown
in Figs (1) and (2). However, it might be difficult in the experiment to measure with reason-
able accuracy the amplitude of the disturbance at these y-locations.

Previous nonparallel stability investigations using the same analysis approach dropped the

third term in Eq (33) when calculating the nonparallel growth rate [14,17,18]. This was

justified in [17] by claiming that the contribution of the distortion of the eigenfunction to the
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growth rate can be neglected when the growth rate is calculated at ¢! ... It was also claimed
in [17,18] that, by dropping the third term in Eq (33), the agreement between the theoretical
and the experimental growth rates becomes better for the experimental data that are measured
at or near I,l,,,. Both justifications are in error. With respect to the first claim, it is true that
the distortion of the eigenfunction is near minimum when it is calculated at 181l max OF 1ol s
for compressible flows) but its value cannot be neglected compared to other terms in Eq (33).
To show this fact, Table 1 lists calculated values of different terms in Eq (33) for the most
amplified nonparallel frequency at R =1000. At M. =0, Van Stijn and Van de Vooren [20]
corrected the error in the growth rate calculations by adding the third term in Eq (33). With
respect .to the experiments and the comparison with the theory, difficulties encountered at low
speeds and discussed by Saric [6] may have large effects on the experimental measurements.
Consequently, these experimental data, especially for high frequency. disturbances, should be
treated cautiously. Sensitivity studies performed by Bertolotti [5] indicated that many factors
may contribute to large deviation in the measurements and to the discrepancy between theoret-

ical and experimental results .

The variation of the disturbance growth rate with the normal coordinate as defined by (33)
suggests the use of a quantity that is integrated across the boundary layer. The square of the
mass-flow amplitude, or the total energy of the disturbance may be suitable physical quantities
that can be used for that purpose. While the first is measurable, the second is difficult to
measure due to lack of adequate means for measuring the disturbance normal velocity com-
ponent [6]. In this paper, we also present results of the disturbance growth rates using the
integral of these physical quantities in Eq (33) to calculate the nonparallel growth rates. The

integral of the square of the mass-flow disturbance is given by,
E@)=[1LT1dy (36)
0

and the integral of the disturbance kinetic energy is defined as ,

Em=[12 Lottt tt)+ X w54 37
-! Tol To 161 363 757 To YL To y
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4. RESULTS AND DISCUSSIONS

4.1. Subsonic and supersonic stability

The effect of mean-flow nonparallelism on the boundary- layer stability is demonstrated in
this section by presenting results for the disturbance growth rates at two streamwise locations,
namely, R =500, and R = 1000. Results are presented in Figs. (3a) and (3b) for Mach numbers
0.0 and 0.8 where a 2D Tollmien Schlishting (TS) mode is dominant, and in Figs (4a)-(4c) for
Mach numbers 1.6, 2.2, and 3.0, where an oblique first mode is dominant at an angle 0
between 50 - 65 degrees. Each figure shows three different curves for the growth rate. Curve
(a) is the parallel spatial growth rate ( first term in Eq 33), curve (b) is the nonparallel spatial
growth rate without the distortion effect of the eigenfunction (first two terms in Eq (33)), and
curve (c) is the total nonparallel spatial growth rate including the contribution of the distortion
of the eigenfunction. The growth rates (a) and (b) are independent of the normal coordinate y,
as well as the disturbance-flow quantity, but the growth rate (c) is a function of both. In Figs
(3) and (4), we choose to calculate the growth rate (c) at the y- location where the mass-flow
disturbance amplitude peaks. This choice is made in order to simulate the experimental meas-
urements at high speed boundary layers which use a hot wire operated at constant overheat to
follow the peak of the mass-flow disturbance.

At subsonic Mach numbers, Fig (3), curve (b) overestimates the nonparallel effects;
however, curve (c) shows that if one follows | {l ., (in the incompressible limit the mass-flow
and the streamwise-velocity disturbances have identical y-distribution), one observes a slight
shift of the unstable frequency band to higher values, but only a small effect on the growth

rates when compared with the parallel curve (a).

As Mach number increases to the supersonic range, Fig (4) indicates that curve (b) still
overestimates the nonparallel effects. Curve (c) that follows 1§l .., shows large effects on the
growth rates accompanied by a one-side shift of the unstable frequency band to higher frequen-

cies when compared with the parallel curve (a). At Mach numbers 1.6, 2.2, and 3.0, oblique
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disturbances are used in the calculations because they are most unstable. The contribution of
the flow nonparallelism at supersonic Mach numbers to the disturbance growth rates, unstable
frequency band, and the shift of the most unstable frequency, seems different from that at sub-
sonic Mach numbers. However, by comparing Fig (4a) for an oblique wave at M, = 1.6 with
Fig (5) for a 2D wave at the same Mach number, we conclude that this difference is due to the

obliqueness of the disturbance rather than the increase in Mach number.

Previous figures show the local (at fixed R) behavior of the total nonparallel growth rate,
curve (c), with respect to the parallel one, curve (a). The same behavior is also observed when
a disturbance with a fixed frequency propagates downstream. For 2D and oblique disturbances
at M. =16, Figs (6a) and (6b) show respectively the variation of growth rate curves (a) and
curve (c) with Reynolds number for a nondimensional frequency F =/ R =40x107%, The
growth rates of the 3D disturbances in Fig (6b) are calculated with constant spanwise
wavenumber parameter B = 10°3/R = 0.1 in the streamwise direction corresponding to a wave
angle of 50 degrees at branch I. The wave angle slightly increases as the disturbance pro-
pagates downstream. The solid dots in Fig (6) are the results by Bertolotti (unpublished data
provided in a private communication) using the parabolic stability equations approach (PSE).
They are in full agreement with our results at M.. = 1.6. The PSE approach [5,21] uses the fact
that the second-order derivatives of the disturbances growth rate , wavelength, and velocity in
the streamwise direction are negligible, resulting in an initial value problem which is solved by
a marching procedure.

Figure (7) shows the effect of the wave obliqueness on the maximum nonparallel growth
rate (curve ¢) at M. =16 and R = 500. The maximum paralle! growth rate (curve a) is included
for comparison. Here the maximum growth rate is calculated with respect to the frequency.
Nonparallel effects are almost negligible for 2D and slightly oblique waves and increase as the

wave angle increases.

Figure (8) gives the variation of the maximum spatial growth rates with respect to fre-

quency of an oblique disturbance at 55 degrees with streamwise position. The same variation
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is shown for a 2D disturbance for comparison. Considerable nonparallel effect is indicated by
curve (c) for the oblique wave (about 20 % increase in the maximum spatial growth rate at

R =1000), while it is negligible for 2D disturbances.

Results concerning the integral definition of the growth rates are presented in Figs (9a)
and (9b) for a 2D TS mode at Mach nufnbers 0 and 0.8, respectively, and in Figs (102)-(10c)
for an oblique mode at Mach numbers 1.6, 2.2, and 3.0, respectively. Each figure shows three
different curves for the disturbance growth rates. Curve (a) is the parallel spatial growth rate,
curve (d) is the nonparallel spatial growth rate using the integral of the square of the mass-flow
disturbance, and curve (e) is the nonparallel spatial growth rate using the integral of the distur-
bance kinetic energy. All of these growth rates are independent of the normal coordinate.
These figures show that the integral of energy criterion always overestimates the nonparallel
effect compared to other criteria. As Mach number increases, Fig (10) shows little difference

between curves (d) and (e).

4.2. Hypersonic stability

As Mach number increases, multiple eigenvalues of amplified and damped disturbance
modes result as solutions to the compressible stability equations [22]. The leading unstable

mode (called second mode) and higher ones are most unstable as 2D waves.

In this section, we present disturbance growth rate results at Mach numbers 4.5, 5.8, 7.0,
and 10, concentrating on the 2D second mode at R = 1000. A comparison between growth rate
curves (a) parallel, (b) nonparallel without the distortion of the eigenfunction, and (c) nonparal-
lel with the distortion of the eigenfunction, are shown in Figs (11a)-(11¢) for Mach numbers
4.5, 5.8, and 7.0, respectively. Again, in these figures, the growth rate curve (c) is calculated
at the y-location where the mass-flow disturbance is maximum. Figures (11a)-(11c) show that
curve (b) overestimates the nonparallel effect, while curve (c) indicates a shift of the unstable
frequency band to higher values. Although the most amplified frequency is higher due to non-

parallel flow effect, the maximum growth rate is almost the same as the parallel calculations.
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Results of the integral definition of the growth rate for the second mode are given in Figs
(12a)-(12c) for Mach numbers 4.5, 5.8, and 7.0, respectively. Curve (e), which represent the
integral of the disturbance kinetic energy, predicts almost the same nonparaliel growth as curve
(¢) in Fig (11). Also, curve (d) of the integral of the square of the mass-flow disturbance is

underestimating the growth rates compared to curve (c) of Fig (11).

A summary of nonparallel flow effects is given in Figs (13a) and (13b) for a range of
Mach numbers from O - 10 at R = 1000. The maximum mass-flow amplitude criterion is used
to calculate the nonparallel growth rates. The maximum spatial growth rate (Fig 13a) calculated
using the nonparallel theory is higher by approximately 20% in the supersonic range (for an
oblique first mode), and by about 8% - 22% in the hypersonic range (for a 2D second mode)
as compared to the parallel one. Another noticeable nonparallel effect is shown in Fig (13b).
Nonparallel calculations indicate a shift of the most unstable frequency to a higher value by
about 6% - 12% in the supersonic range, and by about 6% - 12% in the hypersonic range com-

pared to the parallel one.

4.3. Comparison with experiments

The number of experiments that measure the flat plate linear stability characteristics of
supersonic or hypersonic boundary layer is limited. Serious difficulties are usually present in
such experiments due to sound radiation from the turbulent wall boundary layer [7,9,10] that
ultimately affect the disturbance growth rate measurements (noisy wind tunnels). Another limi-
tation of the experiments is that they study the propagation of disturbances that arise naturaily
in the boundary layer {7,9,10]. These disturbances are comprised of a frequency spectrum with
unclear impact of the different components on the signal of the hot-wire anemometer. Stability
theory usually studies the development of individual components of the disturbance spectrum

corresponding not only to a certain frequency but also propagating at a certain angle.

With these difficulties, stability experiments were undertaken mainly to qualitatively prove

the findings of the stability theory concerning the first- and second-mode characteristics in
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supersonic and hypersonic speeds. Data from supersonic experiments using naturally-
developing disturbances are usually compared with calculations for the most theoretically
amplified disturbances which are oblique. The comparison performed by El-Hady and Nayfeh
[14] with these experiments cannot be regarded as correct, and the uncertainty of the wave
angle in these experiments make them unsuitable for comparison with theoretical nonparallel

results.

The detailed experiment of Kendall [8] at M. =45 is superior to others [7,9,10] for the
following reasons. The tunnel wall boundary layers were laminar, and difficulties caused by
turbulence-induced sound waves were avoided. Artificial disturbances of known frequencies
and wave obliqueness angles 6 =0° and 6 = 55° were introduced into the flat plate boundary
layer. This was achieved by glow discharge formed using electrode pairs positioned at these
angles. The glow discharge locally heats the flow producing a pressure disturbance with too
small dissipating power to affect the mean flow. A hot-wire anemometer that operates at high
constant overheat was used for wave measurements, thus minimizing its sensitivity to total
temperature disturbances. The distribution of the measured disturbance amplitude across the
boundary layer in Kendall’s experiment was almost similar at different streamwise locations.
Because of this, the maximum amplitude points followed in the experiment had a contour of
almost constant y-location; hence the sensitivity of the hot wire to changes in the mean flow
conditions was minimum. Then, energy fluctuations measured by the hot wire have been inter-

preted as being nearly proportional to the mass-flow disturbance amplitude.

In Kendall’s experiment, the disturbance growth rates were measured in the streamwise
direction following the maximum amplitude location. The disturbances introduced at 6 = 55°
were found to grow nearly equal at various spanwise locations. One minor difficulty remaining
unresolved in Kendall’s experiment is that the thickness of the boundary layer exceeded the
theoretically predicted value by about 10 %, although the experimental velocity profiles were
similar to the calculated ones. For comparison purposes, the calculations are made at a value

of Reynolds number based on the experimental displacement thickness.
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Figure (14a) shows a comparison of the growth rates of a first mode oblique disturbance
with 6 =55° at R =1550. Figure (14b) shows a comparison of the growth rates of a second
mode 2D disturbance with 6 = 0° at R = 1550. Nonparallel growth rates are calculated by using
Eq (33) at the y-location where the mass-flow disturbance has a maximum. For the first mode,
nonparallel calculations (curve (c)) enhances the agreement between the theory and the experi-
ment especially near the peak growth rates. However, higher growth rates are given by scat-
tered experimental data in the frequency range 15 - 22 x 10®. For the second mode, Fig(14b)
shows excellent agreement between the nonparallel calculations and the experiment at the
lower frequency region and good agreement near the second neutral point. Also, the experi-
mental data indicate a shift in the unstable frequency band from the parallel results, as
predicted by the nonparallel calculations. However, the maximum growth rate for the second

mode is not matched between the calculations and the experiment.

As mentioned in Section 3, the discrepancy between the nonparallel calculations and the
experiment is expected. The wide peaks predicted by the calculations [15] of the mass-flow
disturbance amplitude at some frequencies make it experimentally difficult to measure the
actual growth rate, especially if the growth rate changes rapidly around the peak location. In
Fig (15), we show theoretical results of the variation with y of both the mass-flow disturbance
amplitude |{! and the nonparallel growth rate (Eq 33) based on {,. These results are given in
Fig(15) for the frequencies (a) F = 15x10™ for a first mode and (b) F = 12510~ for a second
mode, and indicate a rapid change of growth rate around the peak amplitude. These two fre-
quencies are chosen because of the apparent uncertainty in the measurement of the experimen-
tal growth rate near these frequencies, see Fig (14). These experimental growth rates are
included in Figs (15) to show that the experimental measurements of the mass-flow amplitude
lies within a certain percentage deviation from the peak. The y-variations of the mass-flow
amplitude and the growth rates shown in Fig (15) are typical for the first and second unstable
frequency range at R = 1550, except that the y-location of 1¢,! . varies slightly with frequency.

The peak is not sharp in general, but it extends over a considerable normal distance [15].
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5. CONCLUDING REMARKS

The nonparallel correction to the growth rates of disturbances developing in the flat plate
boundary layer have been computed for a wide range of Mach numbers. Various definitions
are used to calculate the nonparallel growth rates. A definition, which is based on a pointwise
measure for the disturbance amplitude, is a function of the normal as well as the streamwise
coordinates. On the other hand, a definition which is based on an integrated measure (across
the boundary layer) for the disturbance amplitude allows one to define a unique total growth
rate at any streamwise location. From the present calculations, we conclude with the following

remarks :

1. If we choose to follow the peak of the mass-flow amplitude in the calculations, the growth
rate is changing rapidly around this point. Theoretical calculations of the eigenfunction and its
x-derivative require high resolution in the normal coordinate direction in order to correctly esti-
mate the growth rates. On the other hand, calculations at different Mach numbers show that
the nonparallel growth rate (Eq 33) at a fixed R is nearly independent of y towards the outer

edge of the boundary layer.

2. The distortion of the mass-flow eigenfunction (the third term in Eq 33) is small at the y-
location where the mass-flow amplitude peaks. However, its contribution to the calculated

growth rate is significant.

3. Nonparallel effects calculated at R = 1000 by using the maximum mass-flow amplitude cri-
terion indicate that the maximum nonparallel spatial growth rate is higher by approximately
20% in the supersonic range (for an oblique first mode), and by about 8% - 22% in the hyper-
sonic range (for a 2D second mode) as compared to the parallel one. Also, in the range of
Mach numbers from O - 10, the most unstable frequency shifts to a higher value by about 6% -

12% compared to the parallel one.
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4. A meaningful comparison between the theory and experiment requires that the same flow
physical quantity be used to calculate the disturbance growth rate in both. All terms of Eq
(33) are accounted for in the experimental measurement. When the mass-flow amplitude is
used for this purpose, uncertainty in detecting its peak in the experiment will contribute to
errors in the experimental determination of the disturbance growth rates; and hence a
discrepancy with the theoretical predictions. This uncertainty most probably occurred in
Kendall’s experiment [8] at M., =4.5 when measuring the growth rate at some frequencies. In
spite of that, we find good agreement between the calculated nonparallel growth rates and

Kendall’s experiment [8] at M, = 4.5.

ACKNOWLEDGMENT

This work was supported by the Theoretical Flow Physics Branch of NASA Langley

Research Center, under contract NAS1-18599.

APPENDIX A : Nonzero elements of ,;, n = 1,..8, j = 1,..8 in Eq (15)

bia=1, by = iRYQUT)+ o + B2,

by =-Wy /U, by =Ru /WT) —ialp,/u+ (m+1)T,/T],
by = i0R /| — (m+1)yM 2 a9,

bos = (m+Dod/l — (uy )y /0, bag = —u, /u,

by =—i0, by =T,/T, bag=—iYM20, bas=i¢/T,
by =—iP, ba =-ioxlm+2)bs3 - 2bpl, bay = xba,
bay = m+2)x(T,,/T — basbss] — xba,

baa =~ (m+2YM 2 ((b3 — b2)o + aw, ],

bas = ixou, (Uit + (m+2)/T) + (m+2)p, /(U ),
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bag = iMA2)YHT, buy = Bbylct, bag=—i%B,
bs¢=1, bey=-20v-1M21Tu,,

bgy = RIT,/(UT) + iowm, by,

bes = —iR (- )M 2T/,

bes = iIRTY/(WT) + o + P> — (y-DM2Tu,? - p 1,
bee = 2b3g  bgs = byl(m+1)bs; - byl,

big =1, bgy=Pbyla, bgs=(m+1)BHT,

b87 = b21’ b88 = b22

where ¢ = au-o, x = V[R/W + i(m+2)yM 2¢), A = dwdT, and the y-subscript denotes da/dy. The sub-
script 0 that is adopted in the analysis for the mean-flow quantities is dropped here for simpli-

city.

APPENDIX B : #, and 45 in Eq 27

oo o0

h1=§__:0£anc: dy, h3=§l[dnc;dy

where the nonzero elements of a,, n = 1,...,8 are :
a=—-im+aTQ, - RQJK, as=TQ,,

aq = (m+2)x[Q, T/n + 2T,)01 + TQ, 1 + RYQ 5/,

ag=-RTQsM, ag=—-i(m+1)PTQ, — ROJu

where

Q1= +¥M2ul, — ulsTHT,

Q2= Ri(m+2p/R — uwlT1G; + [y G3 + (m+ DGy + iBEIR - L,

Q3= [mu, ; + (m+DuG; + fuy GIR + xG,
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Q4 =i(m+DUBL/R + x{;,

Qs = (=DM 2 2uu, Gy/R + uly) + [2ipo/(R T)-u/T1Gs,
and the nonzero elements of d,, n = 1,....8 are :
dy=—i(m+1)aTS, — RSyp, ds=TS,,

dy= (m+2)x[(n, T/u + 27,)S, + TS,)J + RySyu,,
de¢=-RTSsy, ds=-i(m+1)BTS, - RSyp

where

Sy = {{u+v, 20T )6 + uls, + v + T NT? = YM 2 [u+v, ~AT 1atu g v Ly VT — G/ T

Sz = [i (m+2) (), /R —u, /TG, + [2i (m+2uo/R ~u/T )y, = v LT+ [((m+ 1)l +mp, G+, C5 VR

- WM 2ZALYT - Loy + (FOAl(m+2)u, +mv, J+ATH s + i Blim+ Dpo, +mp, GIVR

S3 = [muy Clx'Hlx C2+(m+1)uC?;¢ VR +[i (au)z/R _vy/T]§3 - VCSy/T + Kcﬁx

+ [(m+Dflug +uy 0, +(m+2)vy, J0s/R + A, Cs. /R + [(m+2)v, +mu, J(As), /R

S4 = ’B[u'x CX+(m+1)pCIx]/R - iBﬂm(uny)Cs/R + l(au)x C7/R + KC7J: - VCS/T

Ss=(DMZ {p. & + 2iu(el; + BL([(m+2)uy+mv, YR ~T, /T )
+ 200 DM 2 (14 G Himuug +H(m+2)vy 10ay } = T4V YYM 2 L/T~Ls/T?) + (- 1DM 2 (G tv Gy
+ i (Lo, +20u, )Cs/(RT) + [2i ap/(RT)~u/T1Ls, — vy T

where

A=ul, +vI,, A= uu; +vu,, Xx=2ipW/R — u/T
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and the x-subscript denotes d/dx.
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Table 1 Calculated values of different terms in Eq (33) for various Mach numbers at R = 1000

and the most unstable nonparallel frequency (DIS is the last term in Eq 33).

M| -q —(o; +€8;) DIS O[Eq 33]
First mode, 6 = 0,0,55,60,65 respectively

0.0 [.6237¢-2 | .6813e—-2 |-.0421e-2 | 6392¢-2
0.8 |.4501e-2 | .4985¢-2 |-.0606¢ -2 | .4378¢—2
1.6 1.2626e-2 | .3236e—2 [-.0103¢e—2 | 3133e—2
22 [.2141e-2 | .2843¢—2 |-.0072¢ -2 | 2771e—2
3.0 |.1852e-2 | .2623¢ -2 [-.0166e—2 | 2458¢—2
Second mode, 8 = O

4.5 |.2878e-2 | .4889¢—2 [-.1307e—2 |.3582¢—2
5.8 1.3018e—-2 | .4687¢~2 |—.1349¢ -2 | .3338¢ -2
7.0 [.2323e-2 | .3766e -2 |—.1525¢-2 | 2241e-2
10. |.6483e-3 | 2443¢-2 |-.1315¢-2 |.1128¢ -2
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SPATIAL GROWTH RATE

8 10 12 14 16 18x 107
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Fig 3a Variation of the spatial growth rates with frequency at subsonic speeds for 2D wave, [a]

-0y, [b] - (o; +€ty;), [c] Eq 33 based on {; max.
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SPATIAL GROWTH RATE
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Fig 3b Variation of the spatial growth rates with frequency at subsonic speeds for 2D wave, [a]

-0y, [b] - (o; +ety,), [c] Eq 33 based on {, max.
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SPATIAL GROWTH RATE
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Fig 4a Variation of the spatial growth rates with frequency at supersonic speeds for a first mode

oblique wave, [a] —a;, [b] - (o + €t,), [c] Eq 33 based on {, max.
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Fig 4b Variation of the spatial growth rates with frequency at supersonic speeds for a first mode

oblique wave, [a] -a;, [b] - (o + £8y,), [c] Eq 33 based on {, max.
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Fig 4c Variation of the spatial growth rates with frequency at supersonic speeds for a first mode

oblique wave, [a] -a;, [b] - (o +ew,), [c] Eq 33 based on £, max.
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SPATIAL GROWTH RATE
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Fig 5 Variation of the spatial growth rates with frequency at supersonic speeds for a 2D wave,

[a] -a;, [b] - (& + &), [c] Eq 33 based on o max.
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Fig 6a Variation of the spatial growth rates with Reynolds number for a 2D wave at M_ = 1.6,

and comparison with PSE results. [a] -o;, [c] Eq 33 based on {; max.
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Fig 6b Variation of the spatial growth rates with Reynolds number for an oblique wave at

M_ =16, and comparison with PSE results. [a] -a;, [c] Eq 33 based on {; max.
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Fig 7 Effect of wave obliqueness on the maximum growth rate (w.r.t. frequency) at M. = 1.6,

[a] —o;, [c] Eq 33 based on {, max.



- 40 ~

(o)}
]><
(-

w

a2
l
<
8
I
o
o

=
l

w
I
o

. o - t——
—
-

no
I

l

MRX SPRTIAL GROWTH RATE

I, 2 N R RN BT R
0 200 400 600 800 1000 1200 1400

REYNOLDS NUMBER

o

Fig 8 Variation of maximum spatial growth rates (w.r.t. frequency) with Reynolds number for

2D and oblique wave at M_ = 1.6, [a] —a;, [c] Eq 33 based on {; max.



- 4] -

SPATIAL GROWTH RATE

10
FREQUENCY

Fig 9a Variation of the spatial growth rate with frequency for a 2D wave at M. = 0, [a] ~o;, [d]

Eq 33 based on E, [¢] Eq 33 based on E.
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Fig 9b Variation of the spatial growth rate with frequency for a 2D wave at M_ = 0.8, [a] -o;, [d]
Eq 33 based on £, [e] Eq 33 based on E.
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Fig 10a Variation of the spatial growth rate with frequency for a first mode oblique wave at

M_ =16, [a] —o;, [d] Eq 33 based on E, [e] Eq 33 based on E.
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Fig 10b Variation of the spatial growth rate with frequency for a first mode oblique wave at

M.=22, [a] -0, [d] Eq 33 based on £, [e] Eq 33 based on E.
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Fig 10c Variation of the spatial growth rate with frequency for a first mode oblique wave at

M_ =130, [a] -o;, [d] Eq 33 based on E, [e] Eq 33 based on E.
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Fig ‘11a Variation of the spatial growth rate with frequency for a 2D second mode at R = 1000

and M_=45. [a] -, [b]- (o; +ety), [c] Eq 33 based on {, max.
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Fig 11b Variation of the spatial growth rate with frequency for a 2D second mode at R = 1000

and M. =58. [a] -a;, [b]- (o +€®;), [c] Eq 33 based on (o max.
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Fig 11c Variation of the spatial growth rate with frequency for a 2D second mode at R = 1000

and M_=170. [a] -o;, [b]- (& +e&y), [c] Eq 33 based on {, max.
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Fig 12a Variation of the spatial growth rate with frequency for a 2D second mode at M. = 4.5

and R = 1000, [a] -a;, [d] Eq 33 based on L, [e] Eq 33 based on E.
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Fig 12b Variation of the spatial growth rate with frequency for a 2D second mode at M_ =538

and R = 1000, [a} -a;, [d] Eq 33 based on £, [e] Eq 33 based on E.
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Fig 12c Variation of the spatial growth rate with frequency for a 2D second mode at M. =170

and R = 1000, [a] o, [d] Eq 33 based on E, [e] Eq 33 based on E.
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Fig 13a Effect of flow nonparallelism on the maximum spatial growth rates at R = 1000, and for

a range of Mach numbers from 0 to 10, [a] -0, [c] Eq 33 based on {; max.
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Fig 13b Effect of flow nonparallelism on the most unstable frequencies at R = 1000, and for a

range of Mach numbers from 0 to 10, [a] -a;, [c] Eq 33 based on { max.
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Fig 14a Comparison of the nonparallel growth rate with Kendall’s experiment for an oblique

first mode at M. =45, R =1550. [a] -a;, [c] Eq 33 based on {, max.
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Fig 14b Comparison of the nonparallel growth rate with Kendall’s experiment for a 2D second

mode at M. =45, R = 1550. [a] -o;, [c] Eq 33 based on {y max.
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